Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.150
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2307814121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621131

RESUMO

Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus. We generated five different genomic excisions at the C9orf72 locus in a patient-derived induced pluripotent stem cell (iPSC) line and a non-diseased wild-type (WT) line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 frontotemporal dementia/amyotrophic lateral sclerosis in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes. A coding single nucleotide polymorphism in the patient cell line allowed us to distinguish transcripts from the normal vs. mutant allele. Using digital droplet PCR (ddPCR), we determined that transcription from the mutant allele is upregulated at least 10-fold, and that sense transcription is independently regulated from each allele. Surprisingly, excision of the WT allele increased pathologic dipeptide repeat poly-GP expression from the mutant allele. Importantly, a single allele was sufficient to supply a normal amount of protein, suggesting that the C9orf72 gene is haplo-sufficient in induced motor neurons. Excision of the mutant repeat expansion reverted all pathology (RNA abnormalities, dipeptide repeat production, and TDP-43 pathology) and improved electrophysiological function, whereas silencing sense expression did not eliminate all dipeptide repeat proteins, presumably because of the antisense expression. These data increase our understanding of C9orf72 gene regulation and inform gene therapy approaches, including antisense oligonucleotides (ASOs) and CRISPR gene editing.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Alelos , Esclerose Amiotrófica Lateral/metabolismo , Demência Frontotemporal/metabolismo , Neurônios Motores/metabolismo , Mutação , Expansão das Repetições de DNA/genética , Dipeptídeos/metabolismo
2.
J Agric Food Chem ; 72(13): 7121-7129, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511275

RESUMO

The dipeptide Tyr-Pro has physiological potential for intact transportability into the brain parenchyma, prevention of cognitive impairment, and an adiponectin receptor 1 (AdipoR1) agonistic effect. The present study aimed to understand the effect of Tyr-Pro on the acetylcholine (ACh) nervous system and its underlying mechanism in NE-4C nerve cells. Concentration-dependent ACh production was induced by stimulation with Tyr-Pro and AdipoRon (an AdipoR1 agonist), along with the expression of AdipoR1 and choline acetyltransferase (ChAT) in NE-4C cells. By knocking down AdipoR1 in the cells, Tyr-Pro promoted ChAT expression, along with the activations of AMPK and ERK 1/2. Tyr-Pro did not alter acetylcholinesterase or ACh receptors, indicating that the dipeptide might operate as an ACh accelerator in nerve cells. This study provides the first evidence that the AdipoR1 agonistic Tyr-Pro is a promising dipeptide responsible for the stimulation of the ACh nervous system by AdipoR1-induced ChAT activation.


Assuntos
Acetilcolina , Acetilcolinesterase , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Adiponectina/metabolismo , Dipeptídeos/farmacologia , Dipeptídeos/metabolismo , Neurônios , Proteínas de Transporte
3.
J Agric Food Chem ; 72(11): 5935-5943, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469860

RESUMO

Kokumi-active γ-glutamyl dipeptides accumulate during sourdough fermentation. γ-Glutamylcysteine ligases (Gcls) of Limosilactobacillus reuteri synthesize γ-glutamyl dipeptides during growth in sourdough. This study aimed to evaluate the contribution of Gcls from strains of L. reuteri in the formation of kokumi-active γ-glutamyl dipeptides in sourdough bread. Among 12 acceptor amino acids, the three Gcls of L. reuteri were the most active to Cys. With the acceptor amino acids Ile, Leu, and Phe, Gcl1 was more active than Gcl2 and Gcl3. Accordingly, Gcl1 contributed to the γ-Glu-Ile synthesis in sourdough fermentation. Proofing and baking strongly influenced the concentration of γ-glutamyl dipeptides in bread. The addition of 10% sourdough increased the content of γ-Glu-Leu and γ-Glu-Phe but not of other γ-glutamyl dipeptides in bread. In conclusion, the accumulation of kokumi γ-glutamyl dipeptides in sourdoughs was attributed to the combined activity of cereal enzymes, γ-glutamyl-cysteine ligases, and other microbial enzymes.


Assuntos
Limosilactobacillus reuteri , Cisteína/metabolismo , Pão , Dipeptídeos/metabolismo , Fermentação , Aminoácidos/metabolismo , Glutamato-Cisteína Ligase/metabolismo
4.
J Agric Food Chem ; 72(12): 6414-6423, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501560

RESUMO

Previous research has demonstrated that in pregnant mice deficient in l-methionine (Met), the mixture of the dipeptide l-methionyl-l-methionine (Met-Met) with Met was more effective than Met alone in promoting mammogenesis and lactogenesis. This study aimed to investigate the role of a novel long noncoding RNA (lncRNA), named mammary gland proliferation-associated lncRNA (MGPNCR), in these processes. Transcriptomic analysis of mammary tissues from Met-deficient mice, supplemented either with a Met-Met/Met mixture or with Met alone, revealed significantly higher MGPNCR expression in the Met group compared to the mixture group, a finding recapitulated in a mammary epithelial cell model. Our findings suggested that MGPNCR hindered mammogenesis and milk protein synthesis by binding to eukaryotic initiation factor 4B (eIF4B). This interaction promoted the dephosphorylation of eIF4B at serine-422 by enhancing its association with protein phosphatase 2A (PP2A). Our study sheds light on the regulatory mechanisms of lncRNA-mediated dipeptide effects on mammary cell proliferation and milk protein synthesis. These insights underscore the potential benefits of utilizing dipeptides to improve milk protein in animals and potentially in humans.


Assuntos
Fatores de Iniciação em Eucariotos , Metionina , RNA Longo não Codificante , Gravidez , Humanos , Feminino , Animais , Camundongos , Metionina/metabolismo , RNA Longo não Codificante/metabolismo , Dipeptídeos/metabolismo , Racemetionina/metabolismo , Proteínas do Leite/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo
5.
Plant Cell Rep ; 43(4): 92, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466441

RESUMO

KEY MESSAGE: Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.


Assuntos
Capsicum , Óxido Nítrico , Óxido Nítrico/metabolismo , Frutas/metabolismo , Capsicum/genética , Capsicum/metabolismo , Leucina/metabolismo , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/metabolismo , Ácido Peroxinitroso/metabolismo , Cianetos/metabolismo , Dipeptídeos/metabolismo
6.
Cell Rep ; 43(3): 113892, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38431841

RESUMO

Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Due to the lack of trunk neuromuscular organoids (NMOs) from ALS patients' induced pluripotent stem cells (iPSCs), an organoid system was missing to model the trunk spinal neuromuscular neurodegeneration. With the C9orf72 ALS patient-derived iPSCs and isogenic controls, we used an NMO system containing trunk spinal cord neural and peripheral muscular tissues to show that the ALS NMOs could model peripheral defects in ALS, including contraction weakness, neural denervation, and loss of Schwann cells. The neurons and astrocytes in ALS NMOs manifested the RNA foci and dipeptide repeat proteins. Acute treatment with the unfolded protein response inhibitor GSK2606414 increased the glutamatergic muscular contraction 2-fold and reduced the dipeptide repeat protein aggregation and autophagy. This study provides an organoid system for spinal neuromuscular pathologies in ALS and its application for drug testing.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Esclerose Amiotrófica Lateral/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteínas/genética , Dipeptídeos/farmacologia , Dipeptídeos/metabolismo , Expansão das Repetições de DNA
7.
Acta Physiol (Oxf) ; 240(4): e14126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517248

RESUMO

AIM: Although of potential biomedical relevance, dipeptide metabolism has hardly been studied. We found the dipeptidase carnosinase-2 (CN2) to be abundant in human proximal tubules, which regulate water and solute homeostasis. We therefore hypothesized, that CN2 has a key metabolic role, impacting proximal tubular transport function. METHODS: A knockout of the CN2 gene (CNDP2-KO) was generated in human proximal tubule cells and characterized by metabolomics, RNA-seq analysis, paracellular permeability analysis and ion transport. RESULTS: CNDP2-KO in human proximal tubule cells resulted in the accumulation of cellular dipeptides, reduction of amino acids and imbalance of related metabolic pathways, and of energy supply. RNA-seq analyses indicated altered protein metabolism and ion transport. Detailed functional studies demonstrated lower CNDP2-KO cell viability and proliferation, and altered ion and macromolecule transport via trans- and paracellular pathways. Regulatory and transport protein abundance was disturbed, either as a consequence of the metabolic imbalance or the resulting functional disequilibrium. CONCLUSION: CN2 function has a major impact on intracellular amino acid and dipeptide metabolism and is essential for key metabolic and regulatory functions of proximal tubular cells. These findings deserve in vivo analysis of the relevance of CN2 for nephron function and regulation of body homeostasis.


Assuntos
Dipeptidases , Humanos , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Homeostase , Aminoácidos/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(13): e2319686121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507452

RESUMO

Orphan solute carrier (SLC) represents a group of membrane transporters whose exact functions and substrate specificities are not known. Elucidating the function and regulation of orphan SLC transporters is not only crucial for advancing our knowledge of cellular and molecular biology but can potentially lead to the development of new therapeutic strategies. Here, we provide evidence for the biological function of a ubiquitous orphan lysosomal SLC, the Major Facilitator Superfamily Domain-containing Protein 1 (MFSD1), which has remained phylogenetically unassigned. Targeted metabolomics revealed that dipeptides containing either lysine or arginine residues accumulate in lysosomes of cells lacking MFSD1. Whole-cell patch-clamp electrophysiological recordings of HEK293-cells expressing MFSD1 on the cell surface displayed transport affinities for positively charged dipeptides in the lower mM range, while dipeptides that carry a negative net charge were not transported. This was also true for single amino acids and tripeptides, which MFSD1 failed to transport. Our results identify MFSD1 as a highly selective lysosomal lysine/arginine/histidine-containing dipeptide exporter, which functions as a uniporter.


Assuntos
Lisina , Proteínas de Membrana Transportadoras , Humanos , Arginina/metabolismo , Transporte Biológico , Dipeptídeos/metabolismo , Células HEK293 , Lisina/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfoproteínas/metabolismo
9.
ACS Chem Neurosci ; 15(7): 1342-1355, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38377674

RESUMO

Glutamate carboxypeptidase II (GCPII, also known as PSMA or FOLH1) is responsible for the cleavage of N-acetyl-aspartyl-glutamate (NAAG) to N-acetyl-aspartate and glutamate in the central nervous system and facilitates the intestinal absorption of folate by processing dietary folyl-poly-γ-glutamate in the small intestine. The physiological function of GCPII in other organs like kidneys is still not known. GCPII inhibitors are neuroprotective in various conditions (e.g., ischemic brain injury) in vivo; however, their utilization as potential drug candidates has not been investigated in regard to not yet known GCPII activities. To explore the GCPII role and possible side effects of GCPII inhibitors, we performed parallel metabolomic and lipidomic analysis of the cerebrospinal fluid (CSF), urine, plasma, and brain tissue of mice with varying degrees of GCPII deficiency (fully deficient in Folh1, -/-; one allele deficient in Folh1, +/-; and wild type, +/+). Multivariate analysis of metabolites showed no significant differences between wild-type and GCPII-deficient mice (except for NAAG), although changes were observed between the sex and age. NAAG levels were statistically significantly increased in the CSF, urine, and plasma of GCPII-deficient mice. However, no difference in NAAG concentrations was found in the whole brain lysate likely because GCPII, as an extracellular enzyme, can affect only extracellular and not intracellular NAAG concentrations. Regarding the lipidome, the most pronounced genotype-linked changes were found in the brain tissue. In brains of GCPII-deficient mice, we observed statistically significant enrichment in phosphatidylcholine-based lipids and reduction of sphingolipids and phosphatidylethanolamine plasmalogens. We hypothesize that the alteration of the NAA-NAAG axis by absent GCPII activity affected myelin composition. In summary, the absence of GCPII and thus similarly its inhibition do not have detrimental effects on metabolism, with just minor changes in the brain lipidome.


Assuntos
Glutamato Carboxipeptidase II , Lipidômica , Metabolômica , Animais , Camundongos , Encéfalo/metabolismo , Dipeptídeos/metabolismo , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/metabolismo , Ácido Glutâmico , Lipídeos/química
10.
Nat Neurosci ; 27(4): 643-655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424324

RESUMO

Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-ß1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-ß1 followed by COL6A1. Knockdown of TGF-ß1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-ß1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Demência Frontotemporal/patologia , Esclerose Amiotrófica Lateral/metabolismo , Fator de Crescimento Transformador beta1 , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Drosophila , Matriz Extracelular/metabolismo , Dipeptídeos/metabolismo , Expansão das Repetições de DNA/genética
11.
mBio ; 15(3): e0002524, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38380942

RESUMO

Nitrogen is an essential element for all living organisms, including Escherichia coli. Potential nitrogen sources are abundant in the intestine, but knowledge of those used specifically by E. coli to colonize remains limited. Here, we sought to determine the specific nitrogen sources used by E. coli to colonize the streptomycin-treated mouse intestine. We began by investigating whether nitrogen is limiting in the intestine. The NtrBC two-component system upregulates approximately 100 genes in response to nitrogen limitation. We showed that NtrBC is crucial for E. coli colonization, although most genes of the NtrBC regulon are not induced, which indicates that nitrogen is not limiting in the intestine. RNA-seq identified upregulated genes in colonized E. coli involved in transport and catabolism of seven amino acids, dipeptides and tripeptides, purines, pyrimidines, urea, and ethanolamine. Competitive colonization experiments revealed that L-serine, N-acetylneuraminic acid, N-acetylglucosamine, and di- and tripeptides serve as nitrogen sources for E. coli in the intestine. Furthermore, the colonization defect of a L-serine deaminase mutant was rescued by excess nitrogen in the drinking water but not by an excess of carbon and energy, demonstrating that L-serine serves primarily as a nitrogen source. Similar rescue experiments showed that N-acetylneuraminic acid serves as both a carbon and nitrogen source. To a minor extent, aspartate and ammonia also serve as nitrogen sources. Overall, these findings demonstrate that E. coli utilizes multiple nitrogen sources for successful colonization of the mouse intestine, the most important of which is L-serine. IMPORTANCE: While much is known about the carbon and energy sources that are used by E. coli to colonize the mammalian intestine, very little is known about the sources of nitrogen. Interrogation of colonized E. coli by RNA-seq revealed that nitrogen is not limiting, indicating an abundance of nitrogen sources in the intestine. Pathways for assimilation of nitrogen from several amino acids, dipeptides and tripeptides, purines, pyrimidines, urea, and ethanolamine were induced in mice. Competitive colonization assays confirmed that mutants lacking catabolic pathways for L-serine, N-acetylneuraminic acid, N-acetylglucosamine, and di- and tripeptides had colonization defects. Rescue experiments in mice showed that L-serine serves primarily as a nitrogen source, whereas N-acetylneuraminic acid provides both carbon and nitrogen. Of the many nitrogen assimilation mutants tested, the largest colonization defect was for an L-serine deaminase mutant, which demonstrates L-serine is the most important nitrogen source for colonized E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Camundongos , Animais , Escherichia coli/genética , Acetilglucosamina/metabolismo , Nitrogênio/metabolismo , L-Serina Desidratase/metabolismo , Intestinos , Proteínas de Escherichia coli/metabolismo , Purinas , Carbono/metabolismo , Pirimidinas/metabolismo , Aminoácidos/metabolismo , Dipeptídeos/metabolismo , Etanolaminas/metabolismo , Serina/metabolismo , Ureia/metabolismo , Ácidos Siálicos/metabolismo , Mamíferos/metabolismo
12.
Adv Biol (Weinh) ; 8(3): e2300334, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38213020

RESUMO

Repeat dipeptides such as poly(proline-arginine) (polyPR) are generated from the hexanucleotide GGGGCC repeat expansions in the C9orf72 gene. These dipeptides are often considered as the genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In the study, fluorescein isothiocyanate (FITC) labeled PR20 is used to investigate PR20-induced cell death. The findings reveal that the cell death induced by PR20 is dependent on its nuclear distribution and can be blocked by a nuclear import inhibitor called importazole. Further investigation reveals that BRD4 inhibitors, such as JQ-1 and I-BET762, restrict cytoplasmic localization of PR20, thereby reducing its cytotoxic effect. Mechanistically, the inhibition of BRD4 leads to an increase in the expression of numerous histones, resulting in the accumulation of histones in the cytoplasm. These cytoplasmic histones associate with PR20 and limit its distribution within the nucleus. Notably, the ectopic expression of histones alone is enough to confer protection to cells treated with PR20. In addition, phenylephrine (PE) induces cellular hypertrophy and cytoplasmic distribution of histone, which also helps protect cells from PR20-induced cell death. The research suggests that temporarily inducing the presence of cytoplasmic histones may alleviate the neurotoxic effects of dipeptide repeat proteins.


Assuntos
Histonas , Proteínas Nucleares , Histonas/genética , Histonas/metabolismo , Histonas/farmacologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína C9orf72/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacologia , Expansão das Repetições de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Dipeptídeos/genética , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Morte Celular/genética
13.
Nature ; 626(8000): 836-842, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267582

RESUMO

HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus1,2. Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore3. This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine-glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport4. By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope.


Assuntos
Proteínas do Capsídeo , Glicina , HIV , Carioferinas , Mimetismo Molecular , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Fenilalanina , Humanos , Transporte Ativo do Núcleo Celular , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , Dipeptídeos/química , Dipeptídeos/metabolismo , Glicina/metabolismo , HIV/química , HIV/metabolismo , Técnicas In Vitro , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Carioferinas/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Permeabilidade , Fenilalanina/metabolismo , Solubilidade , Internalização do Vírus , Capsídeo/química , Capsídeo/metabolismo
14.
J Food Sci ; 89(1): 701-709, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051020

RESUMO

Although systemic exposure to peptides, such as Gly-Pro-Hyp, Pro-Hyp, and Gly-Pro, has been reported following administration of collagen hydrolysates from fish scale and porcine skin in vivo, the individual peptide pharmacokinetics remain unknown. We administered the three peptides individually to rats via the intravenous (5 mg/kg) and intragastric (100 mg/kg) routes and then monitored systemic exposure and urinary excretion. The peptides in biological samples were analyzed via liquid chromatography/tandem mass spectrometry. Gly-Pro-Hyp tended to exhibit higher first-pass metabolism than Pro-Hyp; the absolute oral bioavailabilities of Gly-Pro-Hyp and Pro-Hyp were 4.4% and 19.3%, respectively. Gly-Pro levels were very low in the systemic circulation. Pro-Hyp biotransformed from Gly-Pro-Hyp behaved similarly to Pro-Hyp alone when administered orally. Flip-flop kinetics (elimination rate ≫ absorption rate) were evident, probably reflecting transporter-mediated slow absorption. A double-peak phenomenon was observed for Gly-Pro-Hyp and Pro-Hyp when administered orally, and 5.9% ± 2.6% and 1.9% ± 0.3% of each dose were excreted in urine after intravenous administration, respectively. Urinary recovery of Gly-Pro was limited to 0.4% ± 0.5% of the intravenous dose. This work represents the first individual pharmacokinetics of Gly-Pro-Hyp, Pro-Hyp, and Gly-Pro in vivo.


Assuntos
Colágeno , Dipeptídeos , Oligopeptídeos , Ratos , Animais , Dipeptídeos/metabolismo , Colágeno/química , Peptídeos
15.
Angew Chem Int Ed Engl ; 63(3): e202314028, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029352

RESUMO

The caseinolytic protease is a highly conserved serine protease, crucial to prokaryotic and eukaryotic protein homeostasis, and a promising antibacterial and anticancer drug target. Herein, we describe the potent cystargolides as the first natural ß-lactone inhibitors of the proteolytic core ClpP. Based on the discovery of two clpP genes next to the cystargolide biosynthetic gene cluster in Kitasatospora cystarginea, we explored ClpP as a potential cystargolide target. We show the inhibition of Staphylococcus aureus ClpP by cystargolide A and B by different biochemical methods in vitro. Synthesis of semisynthetic derivatives and probes with improved cell penetration allowed us to confirm ClpP as a specific target in S. aureus cells and to demonstrate the anti-virulence activity of this natural product class. Crystal structures show cystargolide A covalently bound to all 14 active sites of ClpP from S. aureus, Aquifex aeolicus, and Photorhabdus laumondii, and reveal the molecular mechanism of ClpP inhibition by ß-lactones, the predominant class of ClpP inhibitors.


Assuntos
Dipeptídeos , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Domínio Catalítico , Dipeptídeos/metabolismo , Virulência , Endopeptidase Clp/metabolismo
16.
J Biol Chem ; 300(1): 105507, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029966

RESUMO

Cystargolides are natural products originally isolated from Kitasatospora cystarginea NRRL B16505 as inhibitors of the proteasome. They are composed of a dipeptide backbone linked to a ß-lactone warhead. Recently, we identified the cystargolide biosynthetic gene cluster, but systematic genetic analyses had not been carried out because of the lack of a heterologous expression system. Here, we report the discovery of a homologous cystargolide biosynthetic pathway in Streptomyces durhamensis NRRL-B3309 by genome mining. The gene cluster was cloned via transformation-associated recombination and heterologously expressed in Streptomyces coelicolor M512. We demonstrate that it contains all genes necessary for the production of cystargolide A and B. Single gene deletion experiments reveal that only five of the eight genes from the initially proposed gene cluster are essential for cystargolide synthesis. Additional insights into the cystargolide pathway could be obtained from in vitro assays with CysG and chemical complementation of the respective gene knockout. This could be further supported by the in vitro investigation of the CysG homolog BelI from the belactosin biosynthetic gene cluster. Thereby, we confirm that CysG and BelI catalyze a cryptic SAM-dependent transfer of a methyl group that is critical for the construction of the cystargolide and belactosin ß-lactone warheads.


Assuntos
Dipeptídeos , Metiltransferases , Streptomycetaceae , Vias Biossintéticas , Dipeptídeos/metabolismo , Lactonas/metabolismo , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Família Multigênica , Streptomyces coelicolor/genética , Streptomycetaceae/enzimologia , Streptomycetaceae/genética
17.
Rev Neurosci ; 35(1): 85-97, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37525497

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder. Mutations in C9orf72 and the resulting hexanucleotide repeat (GGGGCC) expansion (HRE) has been identified as a major cause of familial ALS, accounting for about 40 % of familial and 6 % of sporadic cases of ALS in Western patients. The pathological outcomes of HRE expansion in ALS have been recognized as the results of two mechanisms that include both the toxic gain-of-function and loss-of-function of C9ORF72. The gain of toxicity results from RNA and dipeptide repeats (DPRs). The HRE can be bidirectionally transcribed into RNA foci, which can bind to and disrupt RNA splicing, transport, and translation. The DPRs that include poly-glycine-alanine, poly-glycine-proline, poly-glycine- arginine, poly-proline-alanine, and poly-proline-arginine can induce toxicity by direct binding and sequestrating other proteins to interfere rRNA synthesis, ribosome biogenesis, translation, and nucleocytoplasmic transport. The C9ORF72 functions through binding to its partners-Smith-Magenis chromosome regions 8 (SMCR8) and WD repeat-containing protein (WDR41). Loss of C9ORF72 function results in impairment of autophagy, deregulation of autoimmunity, increased stress, and disruption of nucleocytoplasmic transport. Further insight into the mechanism in C9ORF72 HRE pathogenesis will facilitate identifying novel and effective therapeutic targets for ALS.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas/genética , Proteínas/metabolismo , Dipeptídeos/genética , Dipeptídeos/metabolismo , RNA , Arginina , Alanina , Glicina , Prolina
18.
Nutrition ; 118: 112273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096603

RESUMO

BACKGROUND: Skeletal muscle synthesizes, stores, and releases body L-glutamine (GLN). Muscle atrophy due to disabling diseases triggers the activation of proteolytic and pro-apoptotic cell signaling, thus impairing the body's capacity to manage GLN content. This situation has a poor therapeutic prognosis. OBJECTIVE: Evaluating if oral GLN supplementation can attenuate muscle wasting mediated by elevated plasma cortisol and activation of caspase-3, p38MAPK, and FOXO3a signaling pathways in soleus and gastrocnemius muscles of rats submitted to 14-day bilateral hindlimbs immobilization. METHODS: Animals were randomly distributed into six groups: non-immobilized rats (Control), control orally supplemented with GLN (1 g kg-1) in solution with L-alanine (ALA: 0.61 g kg-1; GLN+ALA), control orally supplemented with dipeptide L-alanyl-L-glutamine (DIP; 1.49 g kg-1), hindlimbs immobilized rats (IMOB), IMOB orally GLN+ALA supplemented (GLN+ALA-IMOB), and IMOB orally DIP supplemented (DIP-IMOB). Plasma and muscle GLN concentration, plasma cortisol level, muscle caspase-3 activity, muscle p38MAPK and FOXO3a protein content (total and phosphorylated forms), and muscle cross-sectional area (CSA) were measured. RESULTS: Compared to controls, IMOB rats presented: a) increased plasma cortisol levels; b) decreased plasma and muscle GLN concentration; c) increased muscle caspase-3 activity; d) increased total and phosphorylated p38MAPK protein content; e) increased FOXO3a and decreased phosphorylated FOXO3a protein content; f) reduced muscle weight and CSA befitting to atrophy. Oral supplementation with GLN+ALA and DIP was able to significantly attenuate these effects. CONCLUSIONS: These findings attest that oral GLN supplementation in GLN+ALA solution or DIP forms attenuates rats' skeletal muscle mass wasting caused by disuse-mediated muscle atrophy.


Assuntos
Glutamina , Hidrocortisona , Atrofia Muscular , Animais , Ratos , Caspase 3/metabolismo , Suplementos Nutricionais , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Glutamina/farmacologia , Músculo Esquelético , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Transdução de Sinais , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Curr Drug Targets ; 25(2): 108-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38151841

RESUMO

Antimicrobial resistance (AMR) to currently available antibiotics/drugs is a global threat. It is desirable to develop new drugs that work through a novel target(s) to avoid drug resistance. This review discusses the potential of the caseinolytic protease P (ClpP) peptidase complex as a novel target for finding novel antibiotics, emphasising the ClpP's structure and function. ClpP contributes to the survival of bacteria via its ability to destroy misfolded or aggregated proteins. In consequence, its inhibition may lead to microbial death. Drugs inhibiting ClpP activity are currently being tested, but no drug against this target has been approved yet. It was demonstrated that Nblocked dipeptides are essential for activating ClpP's proteolytic activity. Hence, compounds mimicking these dipeptides could act as inhibitors of the formation of an active ClpP complex. Drugs, including Bortezomib, Cisplatin, Cefmetazole, and Ixazomib, inhibit ClpP activation. However, they were not approved as drugs against the target because of their high toxicity, likely due to the presence of strong electrophiles in their warheads. The modifications of these warheads could be a good strategy to reduce the toxicity of these molecules. For instance, a boronate warhead was replaced by a chloromethyl ketone, and this new molecule was shown to exhibit selectivity for prokaryotic ClpP. A better understanding of the structure and function of the ClpP complex would benefit the search for compounds mimicking N-blocked dipeptides that would inhibit ClpP complex activity and cause bacterial death.


Assuntos
Antibacterianos , Peptídeo Hidrolases , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeo Hidrolases/metabolismo , Bactérias/metabolismo , Dipeptídeos/metabolismo , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo
20.
Mar Biotechnol (NY) ; 26(1): 74-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153607

RESUMO

The study aimed to compare the effects of crystalline L-lysine and L-glutamate (CAA), Lys-Glu dipeptide (KE) on the growth and muscle development of grass carp (Ctenopharyngodon idellus), and related molecular mechanisms. Five experimental diets (CR, 0.5% CAA, 1.5% CAA, 0.5% KE, 1.5% KE) containing Lys and Glu as free (Lys and Glu, CAA) dipeptide (Lys-Glu, KE) forms were prepared, respectively. A total of 450 juvenile grass carp with an initial weight of 10.69 ± 0.07 g were randomly assigned to 15 cages, and 5 treatments with 3 replicates of 30 fish each for 61 days of feeding. The results showed that the group of 0.5% KE exhibited the best growth performances according to the indicator's weight gain rate (WGR) and specific growth rate (SGR), although no statistically significant occurred among all groups; diet supplemented with 0.5% CAA significantly elevated the condition factor (CF) and viscerasomatic index (VSI) of juvenile grass carp. Diet supplemented with different Lys and Glu co-forms at different levels promoted the muscle amino acid content compared with those of CR group. Comparing with the CR group and other groups, the hardness of 0.5% CAA group significantly increased, and the springiness of 0.5% KE group excelled. Both the muscle fiber diameter and density of 0.5% KE group showed significant difference with those of the CR group, and a negative correlation between them was also observed. To uncover the related molecular mechanism of the differences caused by the different co-forms of Lys and Glu, the effect of different diets on the expressions of protein absorption, muscle quality, and antioxidation-related genes was analyzed. The results suggested that comparing with those of CR group, the dipeptide KE inhibited the expressions of genes associated with protein metabolism, such as AKT, S6K1, and FoxO1a but promoted PCNA expression, while the free style of CAA would improve the FoxO1a expression. Additionally, the muscle development-related genes (MyoD, MyOG, and Myf5) were significantly boosted in CAA co-form groups, and the expressions of fMYHCs were blocked but fMYHCs30 significantly promoted in 0.5% KE group. Finally, the effect of different co-forms of Lys and Glu on muscle antioxidant was examined. The 0.5% CAA diet was verified to increase GPX1a but obstruct Keap1 and GSTP1 expressions, resulting in enhanced SOD activity and reduced MDA levels in plasma. Collectively, the different co-forms of Lys and Glu influenced the growth of juvenile grass carp, and also the muscle development and quality through their different regulation on the protein metabolism, muscle development- and antioxidative-related genes.


Assuntos
Antioxidantes , Carpas , Animais , Antioxidantes/metabolismo , Lisina , Ácido Glutâmico , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Carpas/genética , Carpas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Dieta/veterinária , Dipeptídeos/genética , Dipeptídeos/metabolismo , Expressão Gênica , Ração Animal/análise , Proteínas de Peixes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...